Verschil tussen concaaf en convex

Het verschil tussen concaaf en convex kan als volgt worden verklaard → De term convex verwijst naar het feit dat een oppervlak een binnenwaartse kromming heeft, terwijl als het concaaf zou zijn, de kromming naar buiten zou zijn.

We kunnen het dus op een andere manier beschrijven. Het centrale deel van een convex oppervlak is meer depressief of depressief. Aan de andere kant, als het concaaf zou zijn, zou dat centrale deel prominent aanwezig zijn.

Om het beter te begrijpen, kunnen we enkele voorbeelden noemen. Ten eerste het klassieke geval van een bol, waarvan het oppervlak convex is. Als we het echter in tweeën snijden en de onderste helft behouden, zouden we een convex object hebben, met een doorzakking (ervan uitgaande dat de binnenkant van de bol leeg is).

Een ander voorbeeld van een concaaf zou een berg zijn, aangezien het een prominente plaats is ten opzichte van het aardoppervlak. Integendeel, een put is concaaf, aangezien het betreden ervan impliceert dat het onder het niveau van het aardoppervlak zinkt.

Er moet ook worden opgemerkt dat er ook rekening moet worden gehouden met het definiëren van een object als concaaf of convex perspectief. Zo is een soepbord bijvoorbeeld, wanneer het klaar is om te serveren, bol, het heeft een doorhanging. Als we hem echter omdraaien, wordt de plaat hol.

Als we bijvoorbeeld parabolen analyseren, zijn ze convex als ze een U-vorm hebben, maar concaaf als ze een omgekeerde U-vorm hebben.

Concave en convexe functies

Als de tweede afgeleide van een functie op een punt kleiner is dan nul, dan is de functie op dat punt concaaf. Aan de andere kant, als het groter is dan nul, is het op dat punt convex. Bovenstaande kan als volgt worden uitgedrukt:

Als f »(x) <0, f (x), is het hol.

Als f »(x)> 0, f (x) is het convex.

Bijvoorbeeld, in de vergelijking f (x) = x2+ 5x-6, we kunnen zijn eerste afgeleide berekenen:

f '(x) = 2x + 5

Dan vinden we de tweede afgeleide:

f »(x) = 2

Daarom, aangezien f »(x) groter is dan 0, is de functie convex voor elke waarde van x, zoals we in de onderstaande grafiek zien:

Laten we nu eens kijken naar het geval van deze andere functie: f (x) = - 4x2+ 7x + 9.

f '(x) = - 8x + 7

f »(x) = - 8

Daarom, aangezien de tweede afgeleide kleiner is dan 0, is de functie concaaf voor elke waarde van x.

Maar laten we nu eens kijken naar de volgende vergelijking: -5 x3+ 7x2+5x-4

f '(x) = - 15x2+ 14x + 5

f »(x) = - 30x + 14

We stellen de tweede afgeleide gelijk aan nul:

-30x + 14 = 0

x = 0,4667

Dus als x groter is dan 0,4667, is f »(x) groter dan nul, dus de functie is convex. Terwijl als x kleiner is dan 0,4667, de functie concaaf is, zoals we in de onderstaande grafiek zien:

Convexe en concave veelhoek

Een convexe veelhoek is er een waar twee van zijn punten kunnen worden samengevoegd, waardoor een rechte lijn wordt getekend die binnen de figuur blijft. Evenzo zijn de binnenhoeken allemaal kleiner dan 180º.

Aan de andere kant is een concave veelhoek er een waar, om twee van zijn punten te verbinden, een rechte lijn moet worden getrokken die buiten de figuur ligt, dit is een uitwendige diagonaal die twee hoekpunten verbindt. Bovendien is ten minste één van de binnenhoeken groter dan 180º.

We kunnen een vergelijking zien in de onderstaande afbeelding:

Populaire Berichten

Waarom heeft de OPEC besloten de olieproductie te verminderen?

Gezien de forse daling van de olieprijs heeft de OPEC besloten de productie met 1,2 miljoen vaten per dag te verminderen. Zo zullen de kartellanden verantwoordelijk zijn voor het verminderen van de productie met 800.000 vaten per dag, waaraan nog eens 400.000 vaten per dag moeten worden toegevoegd uit niet-lidstaten van de Lees meer…

Hoeveel kost het om een ​​boek uit te geven?

Uitgevers ontvangen dagelijks tal van werken. Geconfronteerd met zo'n stortvloed aan literaire voorstellen, wijzen de grote uitgevers een groot aantal manuscripten af ​​of reageren niet eens op de auteurs. Zo ontstond als alternatief voor de traditionele manier van het uitgeven van een boek, zelfpublicatie. Self-publishing is zonder twijfel een geheel gewordenLees meer…

Het reële BBP van Colombia groeit al 18 jaar op rij gestaag

Sinds 2000 is het reële bruto binnenlands product van Colombia (het reële BBP) niet gestopt met groeien. Evenzo is de groei sinds 2012 veel groter dan die van het Zuid-Amerikaanse gemiddelde. Hoewel er nog veel moet gebeuren, is Colombia een van de meest veelbelovende economieën in Latijns-Amerika geworden. Lees verder…

Jeugdwerkloosheid: een kruispunt voor de Spaanse economie

De jeugdwerkloosheid in Spanje boekt nog steeds verre resultaten in vergelijking met de rest van de landen van de Europese Unie. Ondanks de grote toewijding van het land aan de figuur van de ondernemer, zou de rest van het gevoerde beleid de situatie kunnen verergeren. In Spanje is de laatste jaren veel nadruk gelegd opLees meer…